DOE Wire Development Workshop Session IV - Conductor Design

John Scudiere

January 21, 2003

2G Wire design – BSCCO Customers

What does the customer want?

1. "Form fit function" to 1G HTS wire

 Product will <u>at least</u> meet the 1G customer specifications (electrical, mechanical, physical, environmental)

2. Price

Significantly less than G1 wire – to justify the change

3. Additional attributes

Higher Je vs. B and T, resistivity, stability

The device builder does not care about what is inside

HTS Applications Now Require Specialized Wires

- Different wire types are required for each application
 - Cables
 - Motors
 - Generators
 - Magnets

Basic Building Block

First Generation Wire Designed to Meet Market Needs

AMSC's Four Multifilamentary Wire Products

First Generation Wire Maturity Leads to Product Differentiation

Product Specifications - Bi-2223 High Strength Reinforced Wire:

BSCCO - MFC

Full Commercial

Geometry: High strength clad

Ave. width: 4.1mm

Ave. thickness: 0.30mm

Min Ic (77K, sf): 150A

Min Je (A/cm2): 12,200

Critical Stress 77K: 265MPa

Critical Stress RT: 150MPa

Critical Strain 77K: 0.4%

Compress Strain tol. 77K: 0.3%

Min bend Diameter: 70mm

Laminate material: Stainless Steel

Hermetic: Yes

Piece Length: 100-1000m

= Not all required in one wire

Reliability: Mechanical Aging Test

We must demonstrate that 2G will meet all requirements

Test Designed to Simulate Cable Stranding Process

BSCCO Tape Reliability Testing Procedure

Additional Criteria

- Jc vs. B (30-80K)
- AC loss
- Joints
- Insulation
- Thermal cycling
- Mechanical aging
- Environmental aging
- Fatigue
- Electrical and thermal stability
- Magnetic susceptibility

Key testing needed in CY 2003

ORNL Wire Procurement will enable early Cable and Magnet performance data

"Neutral Axis" Conductor Design

electrical stability by Cu stabilizer (50-75 μ m) high mechanical stability – HTS along centerline simple current injection

- · - · - Neutral axis

Product Specifications vs. Bi-2223 High Strength Reinforced Wire

	BSCCO - MFC	YBCO - CCC	DOD
	Full Commercial	Full Commercial	<u>POP</u>
Geometry:	High strength clad	Neutral Axis	✓
Ave. width:	4.1mm	4.1mm	1 cm
Ave. thickness:	0.30mm	0.15mm	✓
Min Ic (77K, sf):	150A	100A	120A
Min Je (A/cm2):	12,200	16,000	8,000
Critical Stress 77K:	265MPa	200MPa	\checkmark
Critical Stress RT:	150MPa	150MPa	\checkmark
Critical Strain 77K:	0.4%	0.4%	\checkmark
Compress Strain tol. 77K:	0.3%	0.3%	\checkmark
Min bend Diameter:	70mm	70mm	<30mm
Laminate material:	Stainless Steel	Copper	✓
Hermetic:	Yes	Yes	
Piece Length:	100-1000m	100-1000m	1 m

2G Observations

Mechanical properties similar to 1G

- Electrical performance similar to 1G
 - Irreversibility field suggests significant Jc vs. B improvement possible
 - Anisotropy Min. Jc at 45 degrees, Max. Jc at 90 degrees.
- AC hysteretic losses lower (proportional to filament thickness) dimension perpendicular to applied ac field.

Possible New Markets Enabled by 2G

Airborne Generators/Military systems
Increased Jc vs. B @ 50K = reduced system weight

■ FCLs

High resistance stabilizer permits rapid normal zone

Transformers

Possible reduced AC hysteretic loss and system cost

End

REVOLUTIONIZING THE WAY THE WORLD USES ELECTRICITY™

